	ALPHA COLLEGE OF ENGINEERING AND TECHNOLOGY
	ADVANCED ENGINEERING MATHEMATICS (2130002)
	FOURIER SERIES & FOURIER INTEGRALS
	ASSIGNMENT - 1
1	Find Fourier series of $f(x) = \frac{\pi - x}{2}$ in the interval (0, 2 π).
	Hence deduce that $\frac{\pi}{4} = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \cdots$
2	Find Fourier series of $f(x) = \left(\frac{\pi - x}{2}\right)^2$ in the interval $0 \le x \le 2\pi$.
	Hence deduce that $\frac{\pi^2}{12} = \frac{1}{1^2} - \frac{1}{2^2} + \frac{1}{3^2} - \cdots$
3	Find the Fourier sine series for $f(x) = e^x$ $0 < x < \pi$
4	Find the Fourier series for $f(x) = \begin{cases} \pi + x & -\pi < x < 0 \\ \pi - x & 0 \\ \end{cases}$
5	Find Fourier series of f(x) = $x + x^2$, $-\pi < x < \pi$.
	Hence deduce that $\frac{\pi^2}{6} = 1 + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \cdots$
6	Find Fourier series for $f(x) = x - x^2$, $-\pi \le x \le \pi$ and hence show that
	π^2 1 1 1 1
	$\frac{1}{12} = \frac{1}{1^2} - \frac{1}{2^2} + \frac{1}{3^2} - \frac{1}{4^2} + \cdots$
7	Express $f(x) = x $, $-\pi < x < \pi$ as Fourier series.
8	Find the Fourier series of the function $f(x) = \begin{cases} 1 + \frac{2x}{\pi}; & -\pi \le x \le 0\\ 1 - \frac{2x}{\pi}; & 0 \le x \le \pi \end{cases}$
	Hence deduce that $\frac{\pi^2}{8} = \frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \cdots$
9	Expand f(x) in Fourier series in the interval (0, 2π) if f(x) = $\begin{cases} -\pi ; & 0 < x < \pi \\ x - \pi ; & \pi < x < 2\pi \end{cases}$
	And hence show that $\sum_{r=0}^{\infty} \frac{1}{(2r+1)^2} = \frac{\pi^2}{8}$
10	Obtain Fourier series of $f(x) = x^2$, $-\pi < x < \pi$.
	-1 π^2
	Deduce that $\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{1}{6}$
11	Find Fourier series for $f(x) = \begin{cases} -\pi & -\pi < x < 0 \\ x - \pi & 0 < x < \pi \end{cases}$
12	Find Fourier series expansion of $f(x) = \begin{cases} -\pi, & -\pi < x < 0 \\ x, & 0 < x < \pi \end{cases}$
13	Find Fourier series of the function $f(x) = 2x - x^2$ in $0 < x < 3$
14	For the function $f(x) = \begin{cases} x & 0 \le x \le 2 \\ x & 0 \le x \le 2 \end{cases}$, find its Fourier series.
	Hence show that $\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{5^2} + \dots = \frac{\pi^2}{2}$
15	Obtain Fourier series of the periodic function $f(x) = 2x$, $-1 < x < 1$

16	Is the function $f(x) = x + x $, $-\pi \le x \le \pi$ even or odd? Find its Fourier series
17	Find Fourier cosine series for $f(x) = x^2$, $0 < x < \pi$
17	Find Fourier cosine series for $f(x) = x$ $0 < x < \pi$
18	Find the Fourier sine series for $f(x) = 2x$ $0 < x < 1$
19	Find Fourier sine series over $[0, \pi]$ for the function $f(x) = \cos 2x$
20	Find Fourier cosine series of f(x) = e^{-x} , $0 \le x \le \pi$
21	Find the cosine series for $f(x) = \pi - x$ $0 < x < \pi$
22	Find half range cosine series for $f(x) = (x - 1)^2$ $0 < x < 1$
23	Find half range sine series of $f(x) = x^3$ $0 \le x \le \pi$
24	Find half range cosine series for f(x) = $\begin{cases} kx , & 0 \le x \le \frac{l}{2} \\ k(l-x) , & \frac{l}{2} \le x \le l \end{cases}$
	Also prove that $\sum_{n=1}^{\infty} \frac{1}{(2n-1)^2} = \frac{\pi^2}{8}$
25	Find Fourier integral representation of the function $f(x) = \begin{cases} 2, & x < 2\\ 0, & x > 2 \end{cases}$
26	Find the Fourier cosine integral $f(x) = e^{-kx}$, $x > 0$, $k > 0$
27	Find the Fourier cosine integral for $f(x) = \frac{\pi}{2}e^{-x}$, $x \ge 0$
28	Show that $\int_0^\infty \frac{\lambda^3 \sin \lambda x}{\lambda^4 + 4} d\lambda = \frac{\pi}{2} e^{-x} \cos x$, $x > 0$
29	Express $f(x) = \begin{cases} 1 & 0 \le x \le \pi \\ 0 & x > \pi \end{cases}$ as a Fourier sine integral and hence
	Evaluate $\int_0^\infty \frac{1 - \cos(\pi \lambda)}{\lambda} \sin(x \lambda) d\lambda$
30	Show that $\int_0^\infty \frac{\sin\lambda\cos\lambda}{\lambda} d\lambda = 0$, if $x > 1$
31	Find the Fourier transform of the function $f(x) = e^{-ax^2}$

	ALPHA COLLEGE OF ENGINEERING AND TECHNOLOGY
	ADVANCED ENGINEERING MATHEMATICS (2130002)
	ORDINARY DIFFERENTIAL EQUATIONS
	ASSIGNMENT - 2
1	What are the order and the degree of the differential equation
	$y'' + 3y^2 = 3\cos x$
2	Solve : $9yy' + 4x = 0$
3	Solve : $\frac{dy}{dx} + \frac{y\cos x + \sin y + y}{\sin x + x\cos y + x} = 0$
4	Solve : $\frac{dy}{dx} + y \cot x = 2 \cos x$
5	Check whether the given DE is exact or not
	$(x^4 - 2xy^2 + y^4)dx - (2x^2y - 4xy^3 + \sin y)dy = 0$
	Hence find general solution.
6	What is the integrating factor of the linear differential equation:
	$y' - \left(\frac{1}{x}\right)y = x^2$
7	Solve: $ve^{x}dr + (2v + e^{x})dv = 0$
8	Solve: $(x^2 + y^2 + 3)dx - 2xy dy = 0$
9	Solve : $\frac{dy}{dx} = e^{3x-2y} + x^2 e^{-2y}$
10	Solve the following Bernoulli's equation
	$dy y y^2$
	$\frac{1}{dx} + \frac{1}{x} = \frac{1}{x^2}$
11	Solve: $(x + 1)\frac{dy}{dx} - y = e^{3x}(x + 1)^2$
12	Solve : $\frac{dy}{dx} = \frac{x^2 - x - y^2}{2xy}$
13	Solve: $\frac{dy}{dx} + \left(\frac{1}{x}\right)y = x^3y^3$
14	If $y = (c_1 + c_2 x)e^x$ is a complementary function of a second order differential
	equation, find the Wronskian $W(y_1, y_2)$
15	Find the Wronskian of the two function $\sin 2x$ and $\cos 2x$
17	Find the orthogonal trajectories of cardioids: $r = a(1 - \cos \theta)$
18	Give the differential equation of the orthogonal trajectory of the family of circles $2 + 2 = 2$
10	$x^2 + y^2 = a^2$
19	Solve following DE using the method of undetermined coefficient $d^2 a$
	$\frac{d^2y}{dx^2} + 2\frac{dy}{dx} + 4y = 2x^2 + 3e^{-x}$
20	Solve following DE using the method of undetermined coefficient
	$y'' + 9y = 2x^2$
21	Solve following DE using the method of undetermined coefficient
21	solve following DE using the method of undetermined coefficient $y'' + 4y' - 8r^2$
22	y = 1y = 0x Solve following DF using the method of variation of parameter
~~	$y'' + 9y = \sec 3x$

23	Solve following DE using the method of variation of parameter
	$\frac{d^2y}{d^2y} + y = \sin x$
	$\frac{dx^2}{dx^2} + y = \sin x$
24	Solve following DE using the method of variation of parameter
	$y^{\prime\prime} - 3y^{\prime} + 2y = e^x$
25	Solve following DE using the method of variation of parameter
26	$y'' + a^2 y' = \tan a x$
26	Solve following DE using the method of variation of parameter
	$\frac{d^2y}{dx^2} + 9y = \tan 3x$
27	ax^2
	Solve: $(D + 6D + 9)x = 0$, where $D = \frac{1}{dx}$
28	Solve: $(D^3 - 3D^2 + 9D - 27)y = \cos 3x$
30	Solve : $x^2 \frac{d^2 y}{dx^2} + 4x \frac{dy}{dx} + 2y = x^2 \sin(\ln x)$
31	Solve : $(D^3 - D)y = x^3$
32	Solve : $(D^2 + 9)y = 2\sin 3x + \cos 3x$
33	Find the complete solution of
	$\frac{d^3y}{dx^3} + 8y = \cosh(2x)$
34	Solve: $\frac{d^2y}{dx^2} - 6\frac{dy}{dx} + 9y = \cos(2x)\sin x$
35	Solve : $x^2 \frac{d^2 y}{dx^2} - 6x \frac{dy}{dx} + 6y = x^{-3} \log x$
36	Solve: $(D^2 - 2D + 1)y = 10e^x$
37	Solve: $\frac{dy}{dx}$ + $(\tan x)y = \sin 2x$, $y(0) = 0$
38	Solve: $(D^4 - 16)y = e^{2x} + x^4$, where $D = \frac{d}{dx}$
39	Solve: $y'' + 11y' + 10y = 0$
40	Solve: $(D^2 - 1)y = xe^x$, where $D = \frac{d}{dx}$
41	Solve : $x^2 \frac{d^2 y}{dx^2} - x \frac{dy}{dx} + y = \sin(\ln x)$
42	Solve the following Cauchy Euler equation
	$r^2 \frac{d^2y}{dt^2} + r \frac{dy}{dt^2} + v = \log r \sin(\log r)$
	$dx^2 + dx + y = \log x \sin(\log x)$
42	Find the general colutions of the following differential equations :
43	$d^3y = dy$
	$\frac{1}{dx^3} - 2\frac{1}{dx} + 4y = e^x \cos x$

	ALPHA COLLEGE OF ENGINEERING AND TECHNOLOGY
	ADVANCED ENGINEERING MATHEMATICS (2130002)
	SERIES SOLUTION OF DIFFERENTIAL EQUATION
	ASSIGNMENT - 3
1	Find the power series solution of $(1 - x^2)y'' - 2xy' + 2y = 0$ about the ordinary point $x = 0$
2	Find the power series solution of $3x \frac{d^2y}{dx^2} + 2\frac{dy}{dx} + y = 0$ about the point $x = 0$ using frobenius method.
3	Discuss about ordinary point, singular point, regular singular point and irregular singular point for the differential equation: $x^{3}(x-1)y'' + 3(x-1)y' + 7xy = 0$
4	Find the series solution of $(x^2 + 1)y'' + xy' - xy = 0$ about $x_0 = 0$
5	Find the series solution of $\frac{d^2y}{dx^2} + xy = 0$
6	Find the general solution of $2x^2y'' + xy' + (x^2 - 1)y = 0$ by using frobenius method.
7	Explain regular-singular point of a second order differential equation and find the roots of the indicial equation to $x^2y'' + xy' - (2 - x)y = 0$
8	Find the series solution of $(x - 2)y'' - x^2y' + 9y = 0$ about $x_0 = 0$
9	Find the series solution of $(1 + x^2)y'' + xy' - 9y = 0$
10	Find the series solution of $2x(x-1)y'' - (x+1)y' + y = 0$

	ALPHA COLLEGE OF ENGINEERING AND TECHNOLOGY
	ADVANCED ENGINEERING MATHEMATICS (2130002)
	LAPLACE TRANSFORM
	ASSIGNMENT - 4
1	Find the Laplace transform $t sin^2(3t)$
2	Find the Laplace transform of
	(i) $e^{-3t} u(t-2)$
	(ii) $\frac{1-\cos 2t}{2}$
2	Find inverse Lanlace transform of :
5	(1) (1) (2)
	(i) $\tan^{-1}\left(\frac{-s}{s}\right)$
	(ii) $\frac{s^3}{s^4 - s^4}$
Δ	Find the Laplace transform of the periodic function of the waveform
-	2t
	$f(t) = \frac{1}{3}$, $0 \le t \le 3$, $f(t+3) = f(t)$
5	Solve the following initial value problem using the method of Laplace transforms
	y''' + 2y'' - y' - 2y = 0 given that $y(0) = 1$, $y'(0) = 2$, $y''(0) = 2$
6	Using the convolution theorem, find
	$I^{-1}\left\{ \underbrace{s^2}{s^2} \right\} \qquad a \neq b$
	$\begin{bmatrix} 2 & ((s^2 + a^2)(s^2 + b^2)) \end{bmatrix}, a \neq b$
7	Find $L\{e^{3t+3}\}$
•	
8	Find $L^{-1}\left(\frac{4}{s^2} - \frac{1}{s^2+9}\right)$
9	Use Laplace Transform to solve the following initial value problem:
	$y'' - 3y' + 2y = 12e^{-2t}$, $y(0) = 2$, $y'(0) = 6$
10	Obtain $L\{e^{2t}sin^2t\}$
11	Find $L^{-1} \left[\frac{s+7}{s^2+8s+25} \right]$
4.2	
13	Find the Laplace Transform of $t e^{-t} \cos 2t$
14	Define Laplace transform of $f(t)$, $t \ge 0$
	Find Laplace transform of $t^{-\frac{1}{2}}$
	Find $L\left\{\frac{\sin at}{t}\right\}$
15	Find $L\left\{\int_{0}^{t} e^{t} \frac{\sin t}{t} dt\right\}$
16	Eind $I^{-1} \left\{ \frac{2s^2 - 1}{2s^2 - 1} \right\}$
	$\sum_{i=1}^{n} \frac{1}{(s^2+1)(s^2+4)} \int$
17	Use Laplace Transform to solve the following initial value problem:

	$y'' - 3y' + 2y = 4t + e^{3t}$, $y(0) = 1$, $y'(0) = -1$
18	Find $L\{t \ \sin 3t \ \cos 2t\}$
19	Find $L^{-1}\left\{\frac{e^{-3s}}{s^2+8s+25}\right\}$
20	State the convolution theorem and apply it to evaluate $L^{-1}\left\{\frac{s}{(s^2 + a^2)^2}\right\}$
21	Find $L^{-1}\left\{\frac{1}{s^4-81}\right\}$
22	Find $L\{t^2 \cosh(3t)\}$
23	Find Laplace transform of (i) $\frac{\cos at - \cos bt}{t}$ (ii) $t \sin at$
24	Find $L^{-1}\left\{\frac{1}{(s+\sqrt{2})(s-\sqrt{3})}\right\}$
25	Find $L^{-1}\left(\frac{1}{(s+a)^2}\right)$
26	For a periodic function f with fundamental period p, state the formula to find Laplace transform of f
27	State the convolution theorem and verify it for $f(t) = t$ and $g(t) = e^{2t}$
28	Find $L^{-1}\left\{\frac{e^{-2s}}{(s^2+2)(s^2-3)}\right\}$
29	Find $L\{t(\sin t - t\cos t)\}$
30	Use Laplace Transform to solve the following initial value problem: $y'' - 2y' = e^t \sin t$, $y(0) = y'(0) = 0$
31	Find $L^{-1}\left\{\frac{1}{s(s^2-3s+3)}\right\}$
32	Find $L\left\{\int_0^t e^u(u+\sin u)du\right\}$
33	Find Laplace transform of $f(t) = \begin{cases} 0 & 0 < t < \pi \\ \sin t & t \ge \pi \end{cases}$
34	Evaluate : $t * e^t$
35	Use Laplace Transform to solve the following initial value problem: $y'' + 3y' + 2y = e^t$ $y(0) = 1$, $y'(0) = 0$

36	Find $L^{-1}\left\{\frac{1}{(s-2)(s+3)}\right\}$
37	Using convolution theorem, obtain the value of $L^{-1}\left\{\frac{1}{s(s^2+4)}\right\}$
38	Prove that : (i) $L(e^{at}) = \frac{1}{s-a}$, $s > a$
	(ii) $L(\sinh at) = \frac{a}{s^2 - a^2}$

	ALPHA COLLEGE OF ENGINEERING AND TECHNOLOGY
	ADVANCED ENGINEERING MATHEMATICS (2130002)
	PARTIAL DIFFERENTIAL EQUATIONS
	ASSIGNMENT - 5
1	Form the partial differential equations by eliminating the arbitrary function from $f(x^2 + y^2, z - xy) = 0$
2	Solve the following Lagrange's linear differential equation: $(x^2 - yz)p + (y^2 - zx)q = z^2 - xy$
3	Find the complete solution of the following partial differential equations: (i) $\frac{\partial^3 z}{\partial x^3} - 3 \frac{\partial^3 z}{\partial x^2 \partial y} + 4 \frac{\partial^3 z}{\partial y^3} = e^{x+2y}$ (ii) $\frac{\partial^2 z}{\partial x^2} + 3 \frac{\partial^2 z}{\partial x \partial y} + 2 \frac{\partial^2 z}{\partial y^2} = x + y$
4	Using the method of separation of variables solve: $\frac{\partial^2 z}{\partial x^2} - 2\frac{\partial z}{\partial x} + \frac{\partial z}{\partial y} = 0$
5	Form the partial differential equation from the following: (i) $z = ax + by + ct$ (ii) $z = f\left(\frac{x}{y}\right)$
6	Using the method of separation of variables solve: $\frac{\partial u}{\partial x} = 2 \frac{\partial u}{\partial t} + u$ where $u(x, 0) = 6e^{-3x}$
9	Obtain the solution of the partial differential equation: $p^2 - q^2 = x - y$, where $p = \frac{\partial z}{\partial x}$, $q = \frac{\partial z}{\partial y}$
10	Solve: $y^2p - xyq = x(z - 2y)$
11	Find the solution of the wave equation $u_{tt} = c^2 u_{xx}$, $0 \le x \le L$ satisfying the conditions $u(0,t) = u(L,t) = 0$, $u_t(x,0) = 0$, $u(x,0) = \frac{\pi x}{L}$, $0 \le x \le L$
12	Form the partial differential equations from z = f(x + at) + g(x - at)
13	find the general solution to the partial differential equation $(x^2 - y^2 - z^2)p + 2xyq = 2xz$
14	Solve: $\frac{\partial^3 z}{\partial x^3} - 2 \frac{\partial^3 z}{\partial x^2 \partial y} = 2e^{2x}$
15	Using the method of separation of variables solve: $x \frac{\partial u}{\partial x} - 2y \frac{\partial u}{\partial y} = 0$
16	Solve : $x^2p + y^2q = z^2$

17	Solve using charpit method : $px + qy = pq$
18	Using the method of separation of variables solve:
	$u_x = 2u_t + u \qquad given \ u(x,0) = 4e^{-4x}$
19	Find the general solution to the partial differential equation:
	xp + yq = x - y
20	Form the partial differential equation for the equation:
	$(x-a)(y-b) - z^2 = x^2 + y^2$
21	Using separable variable technique find the acceptable general solution to the
	one-dimensional heat equation $u_t = c^2 u_{xx}$ and find the solution satisfying the
	conditions
	$u(0,t) = u(\pi,t) = 0$ for $t > 0$ and $u(x,0) = \pi - x$, $0 < x < \pi$
22	Form the partial differential equation by eliminating the arbitrary functions from
	$f(x + y + z, x^2 + y^2 + z^2) = 0$
23	Solve the following partial differential equation:
	(z-y)p + (x-z)q = y - x
24	Solve : $p - x^2 = q + y^2$

	ALPHA COLLEGE OF ENGINEERING AND TECHNOLOGY
	ADVANCED ENGINEERING MATHEMATICS (2130002)
	SOME SPECIAL FUNCTIONS
	ASSIGNMENT - 6
1	Define rectangle function and saw-tooth wave function. Also sketch the graphs
2	Find the value of $\Gamma\left(\frac{7}{2}\right)$
3	State the relationship between beta and gamma function.
4	Find the value of $\Gamma\left(\frac{1}{2}\right)$
5	Define Heaviside's unit step functions
6	State Duplication (Legendre) formula
7	Find $B\left(\frac{9}{2},\frac{7}{2}\right)$
8	Find the value of $\Gamma\left(\frac{13}{2}\right)$
9	Represent graphically the given saw-tooth function
	$f(x) = 2x$, $0 \le x < 2$ and $f(x + 2) = f(x)$ for all x
10	Define Rectangle function